Revision 4
Cell Signaling Technology

Orders: 877-616-CELL (2355) orders@cellsignal.com

Support: 877-678-TECH (8324)

Web: info@cellsignal.com cellsignal.com

3 Trask LaneDanversMassachusetts01923USA
For Research Use Only. Not for Use in Diagnostic Procedures.
Applications:

IF-IC, DB

REACTIVITY:

All

SENSITIVITY:

Transfected Only

MW (kDa):

Source/Isotype:

Rabbit IgG

Product Information

Product Usage Information

Application Dilution
Immunofluorescence (Immunocytochemistry) 1:200
DNA Dot Blot 1:1000

Storage

Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody.

Specificity / Sensitivity

5-Carboxylcytosine (5-caC) (D7S8U) Rabbit mAb detects 5-caC by IF in cells over-expressing the TET1 catalytic domain and by dot blot using double-stranded PCR fragments containing 5-caC. Many cells and tissues contain very low endogenous levels of 5-caC that may fall below the detection limits of this antibody. This antibody has been validated using ELISA, dot blot, and synthetic spike-in DNA MeDIP assays and shows high specificity for 5-caC.

Species Reactivity:

All Species Expected

Source / Purification

Monoclonal antibody is produced by immunizing animals with 5-carboxylcytidine.

Background

Methylation of DNA at cytosine residues is a heritable, epigenetic modification that is critical for proper regulation of gene expression, genomic imprinting, and mammalian development (1,2). 5-methylcytosine is a repressive epigenetic mark established de novo by two enzymes, DNMT3a and DNMT3b, and is maintained by DNMT1 (3, 4). 5-methylcytosine was originally thought to be passively depleted during DNA replication. However, subsequent studies have shown that Ten-Eleven Translocation (TET) proteins TET1, TET2, and TET3 can catalyze the oxidation of methylated cytosine to 5-hydroxymethylcytosine (5-hmC) (5). Additionally, TET proteins can further oxidize 5-hmC to form 5-formylcytosine (5-fC) and 5-carboxylcytosine (5-caC), both of which are excised by thymine-DNA glycosylase (TDG), effectively linking cytosine oxidation to the base excision repair pathway and supporting active cytosine demethylation (6,7).
TET protein-mediated cytosine hydroxymethylation was initially demonstrated in mouse brain and embryonic stem cells (5, 8). Since then this modification has been discovered in many tissues, with the highest levels found in the brain (9). While 5-fC and 5-caC appear to be short-lived intermediate species, there is mounting evidence showing that 5-hmC is a distinct epigenetic mark with various unique functions (10,11). The modified base itself is stable in vivo and interacts with various readers including MeCP2 (11,12). The global level of 5-hmC increases during brain development, and 5-hmC is enriched at promoter regions and poised enhancers. Furthermore, there is an inverse correlation between levels of 5-hmC and histone H3K9 and H3K27 trimethylation, suggesting a role for 5-hmC in gene activation (12). Lower amounts of 5-hmC have been reported in various cancers including myeloid leukemia and melanoma (13,14).

  1. Hermann, A. et al. (2004) Cell Mol Life Sci 61, 2571-87.
  2. Turek-Plewa, J. and Jagodziński, P.P. (2005) Cell Mol Biol Lett 10, 631-47.
  3. Okano, M. et al. (1999) Cell 99, 247-57.
  4. Li, E. et al. (1992) Cell 69, 915-26.
  5. Tahiliani, M. et al. (2009) Science 324, 930-5.
  6. He, Y.F. et al. (2011) Science 333, 1303-7.
  7. Ito, S. et al. (2011) Science 333, 1300-3.
  8. Kriaucionis, S. and Heintz, N. (2009) Science 324, 929-30.
  9. Globisch, D. et al. (2010) PLoS One 5, e15367.
  10. Gao, Y. et al. (2013) Cell Stem Cell 12, 453-69.
  11. Mellén, M. et al. (2012) Cell 151, 1417-30.
  12. Wen, L. et al. (2014) Genome Biol 15, R49.
  13. Delhommeau, F. et al. (2009) N Engl J Med 360, 2289-301.
  14. Lian, C.G. et al. (2012) Cell 150, 1135-46.

Species Reactivity

Species reactivity is determined by testing in at least one approved application (e.g., western blot).

Applications Key

IF-IC: Immunofluorescence (Immunocytochemistry) DB: DNA Dot Blot

Cross-Reactivity Key

H: human M: mouse R: rat Hm: hamster Mk: monkey Vir: virus Mi: mink C: chicken Dm: D. melanogaster X: Xenopus Z: zebrafish B: bovine Dg: dog Pg: pig Sc: S. cerevisiae Ce: C. elegans Hr: horse GP: Guinea Pig Rab: rabbit All: all species expected

Trademarks and Patents

Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
All other trademarks are the property of their respective owners. Visit cellsignal.com/trademarks for more information.

Limited Uses

Except as otherwise expressly agreed in a writing signed by a legally authorized representative of CST, the following terms apply to Products provided by CST, its affiliates or its distributors. Any Customer's terms and conditions that are in addition to, or different from, those contained herein, unless separately accepted in writing by a legally authorized representative of CST, are rejected and are of no force or effect.

Products are labeled with For Research Use Only or a similar labeling statement and have not been approved, cleared, or licensed by the FDA or other regulatory foreign or domestic entity, for any purpose. Customer shall not use any Product for any diagnostic or therapeutic purpose, or otherwise in any manner that conflicts with its labeling statement. Products sold or licensed by CST are provided for Customer as the end-user and solely for research and development uses. Any use of Product for diagnostic, prophylactic or therapeutic purposes, or any purchase of Product for resale (alone or as a component) or other commercial purpose, requires a separate license from CST. Customer shall (a) not sell, license, loan, donate or otherwise transfer or make available any Product to any third party, whether alone or in combination with other materials, or use the Products to manufacture any commercial products, (b) not copy, modify, reverse engineer, decompile, disassemble or otherwise attempt to discover the underlying structure or technology of the Products, or use the Products for the purpose of developing any products or services that would compete with CST products or services, (c) not alter or remove from the Products any trademarks, trade names, logos, patent or copyright notices or markings, (d) use the Products solely in accordance with CST Product Terms of Sale and any applicable documentation, and (e) comply with any license, terms of service or similar agreement with respect to any third party products or services used by Customer in connection with the Products.

Revision 4
#36836

5-Carboxylcytosine (5-caC) (D7S8U) Rabbit mAb

Immunofluorescence Image 1: 5-Carboxylcytosine (5-caC) (D7S8U) Rabbit mAb Expand Image
Confocal immunofluorescent analysis of 293T cells transfected with a construct expressing DYKDDDDK-tagged TET1 catalytic domain (TET1-CD) using 5-Carboxylcytosine (5-caC) (D7S8U) Rabbit mAb (green) and DYKDDDDK Tag (9A3) Mouse mAb #8146 (red). Blue pseudocolor = DRAQ5® #4084 (fluorescent DNA dye). As expected, 293T cells expressing TET1-CD (red) exhibit increased levels of 5-carboxylcytosine (green).
Dot Blot Image 1: 5-Carboxylcytosine (5-caC) (D7S8U) Rabbit mAb Expand Image
Specificity of various modified cytosine antibodies were determined by dot blot. The same sequence of a 387-base pair DNA fragment was generated by PCR using exclusively unmodified cytosine, 5-methylcytosine (5-mC), 5-hydroxymethylcytosine (5-hmC), 5-carboxylcytosine (5-caC), or 5-formylcytosine (5-fC). The respective DNA fragments were blotted onto a nylon membrane, UV cross-linked, and probed with 5-Carboxylcytosine (5-caC) (D7S8U) Rabbit mAb #36836, 5-Methylcytosine (5-mC) (D3S2Z) Rabbit mAb #28692, 5-Hydroxymethylcytosine (5-hmC) (HMC31) Mouse mAb #51660, and 5-Formylcytosine (5-fC) (D5D4K) Rabbit mAb #74178. As shown, the 5-Carboxylcytosine (5-caC) (D7S8U) Rabbit mAb shows specificity for 5-caC.
Product Image 1: 5-Carboxylcytosine (5-caC) (D7S8U) Rabbit mAb Expand Image
The specificity of 5-Carboxylcytosine (5-caC) (D7S8U) Rabbit mAb was determined by ELISA. The antibody was titrated against a single-stranded DNA oligo containing either unmodified cytosine or differentially modified cytosine (5-mC, 5-hmC, 5-caC, 5-fC). As shown in the graph, the antibody only binds to the oligo containing 5-caC.
Product Image 2: 5-Carboxylcytosine (5-caC) (D7S8U) Rabbit mAb Expand Image
5-Carboxylcytosine (5-caC) (D7S8U) Rabbit mAb specificity was determined by DNA immunoprecipitation. DNA IPs were performed with genomic DNA prepared from human HCT 116 cells, spiked with DNA containing either unmodified cytosine, 5-methylcytosine (5-mC), 5-hydroxymethylcytosine (5-hmC), 5-carboxylcytosine (5-caC), or 5-formylcytosine (5-fC). The enriched DNA was quantified by real-time PCR using primers specific to the spiked-in control DNA sequence. The amount of immunoprecipitated DNA in each sample is represented as signal relative to the total amount of input DNA, which is equivalent to one.