View Featured Offers >>
98110
Necroptosis Antibody Sampler Kit
Primary Antibodies
Antibody Sampler Kit

Necroptosis Antibody Sampler Kit #98110

Citations (4)
Simple Western™ analysis of lysates (0.1 mg/mL) from HT-29 cells treated with ZVAD (20uM, 7.5 hours) + hTNF-alpha (20ng/mL, 7 hours) + SM-164 (100nM, 7 hours) using Phospho-RIP (Ser166) (D1L3S) Rabbit mAb #65746. The virtual lane view (left) shows the target band (as indicated) at 1:10 and 1:50 dilutions of primary antibody. The corresponding electropherogram view (right) plots chemiluminescence by molecular weight along the capillary at 1:10 (blue line) and 1:50 (green line) dilutions of primary antibody. This experiment was performed under reducing conditions on the Jess™ Simple Western instrument from ProteinSimple, a BioTechne brand, using the 12-230 kDa separation module.
Western blot analysis of extracts from various cell lines using RIP3 (E1Z1D) Rabbit mAb (upper) and β-Actin (D6A8) Rabbit mAb #8457 (lower).
Western blot analysis of extracts from various cell lines using MLKL (D2I6N) Rabbit mAb. KARPAS cell Line source: Dr. Abraham Karpas at the University of Cambridge.
Western blot analysis of extracts from HeLa cells, untransfected or transfected with human RIP construct, using RIP (D94C12) XP® Rabbit mAb.
Western blot analysis of HT-29 cells, untreated (-) or treated with combinations of the following treatments as indicated: Z-VAD (20 μM, added 30 min prior to other compounds; +), human TNF-α (hTNF-α, 20 ng/ml, 7 hr; +), SM-164 (100 nM, 7 hr; +), and necrostatin-1 (Nec-1, 50 μM, 7 hr; +), using Phospho-RIP (Ser166) (D1L3S) Rabbit mAb (upper) or β-Actin (D6A8) Rabbit mAb #8457 (lower).
After the primary antibody is bound to the target protein, a complex with HRP-linked secondary antibody is formed. The LumiGLO® is added and emits light during enzyme catalyzed decomposition.
Western blot analysis of HT-29 cells, untreated (-), or treated with combinations of the following treatments as indicated: Z-VAD (20 μM, added 30 min prior to other compounds; +), human TNF-α (hTNF-α, 20 ng/ml, 7 hr; +), SM-164 (100 nM, 7 hr; +), and necrostatin-1 (Nec-1, 50 μM, 7 hr; +), using Phospho-MLKL (Ser358) (D6H3V) Rabbit mAb (upper), or MLKL (D2I6N) Rabbit mAb #14993 (lower).
Western blot analysis of HT-29 cells, untreated (-) or treated with a combination of the following treatments as indicated: Z-VAD (20 μM, added 30 min prior to other compounds; +), Human Tumor Necrosis Factor-α #8902 (hTNF-α, 20 ng/ml, 7 hr; +), and SM-164 (100 nM, 7 hr; +), using Phospho-RIP3 (Ser227) (D6W2T) Rabbit mAb. To confirm phospho-specificity, membranes were either untreated (left) or treated with Calf Intestinal Phosphatase (CIP; right).
Western blot analysis of extracts from 293T cells, mock transfected (-) or transfected with a construct expressing full-length human RIP3 protein (hRIP3; +), using RIP3 (E1Z1D) Rabbit mAb.
Western blot analysis of extracts from 293T cells, mock transfected (-) or transfected with a construct expressing Myc/DDK-tagged full-length human MLKL protein (hMLKL-Myc/DDK; +), using MLKL (D2I6N) Rabbit mAb (upper) and Myc-Tag (71D10) Rabbit mAb #2278 (lower).
Confocal immunofluorescent analysis of OVCAR8 cells using RIP (D94C12) XP® Rabbit mAb (green). Blue pseudocolor = DRAQ5® #4084 (fluorescent DNA dye).
Western blot analysis of HT-29 cells, untreated (-) or treated with a combination of the following treatments as indicated: Z-VAD (20 μM, added 30 min prior to other compounds; +), Human Tumor Necrosis Factor-α #8902 (hTNF-α, 20 ng/ml, 7 hr; +), SM-164 (100 nM, 7 hr; +), and necrostatin-1 (Nec-1, 50 μM, 7 hr; +), using Phospho-RIP3 (Ser227) (D6W2T) Rabbit mAb (upper), RIP3 (E1Z1D) Rabbit mAb #13526 (middle), or β-Actin (D6A8) Rabbit mAb #8457 (lower).
Flow cytometric analysis of control MEF cells (green) or RIP knockout MEF cells (blue) using RIP (D94C12) XP® Rabbit mAb (solid lines) or concentration matched Rabbit (DA1E) mAb IgG XP® Isotype Control #3900 (dashed lines). Anti-rabbit IgG (H+L), F(ab')2 Fragment (Alexa Fluor® 488 Conjugate) #4412 was used as a secondary antibody.
Western blot analysis of HT-29 cells or HT-29 RIPK1 KO cells, untreated (-) or treated with a combination of the following treatments as indicated: Z-VAD (20 μM, added 30 min prior to other compounds; +), Human Tumor Necrosis Factor-α #8902 (hTNF-α, 20 ng/ml, 7 hr; +), and SM-164 (100 nM, 7 hr; +), using Phospho-RIP3 (Ser227) (D6W2T) Rabbit mAb (upper), RIP3 (E1Z1D) Rabbit mAb #13526 (middle) or β-Actin (D6A8) Rabbit mAb #8457 (lower). HT-29 RIPK1 KO cells were kindly provided by Dr. Junying Yuan, Harvard Medical School, Boston, MA.
Simple Western™ analysis of lysates (0.1 mg/mL) from Ramos cells using RIP (D94C12) XP® Rabbit mAb #3493. The virtual lane view (left) shows a single target band (as indicated) at 1:50 and 1:250 dilutions of primary antibody. The corresponding electropherogram view (right) plots chemiluminescence by molecular weight along the capillary at 1:50 (green line) and 1:250 (blue line) dilutions of primary antibody. This experiment was performed under reducing conditions on the Jess™ Simple Western instrument from ProteinSimple, a BioTechne brand, using the 12-230 kDa separation module.
Confocal immunofluorescent analysis of HT-29 cells, untreated (left), pre-treated with Z-VAD (20 μM, 30 min) followed by treatment with SM-164 (100 nM) and Human Tumor Necrosis Factor-α (hTNF-α) #8902 (20 ng/mL, 6 hr; center), or pre-treated with Z-VAD followed by treatment with SM-164 and hTNF-α and post-processed with λ-phosphatase (right), using Phospho-RIPK3 (Ser227) (D6W2T) Rabbit mAb (green). Actin filaments were labeled with DyLight 554 Phalloidin #13054 (red). Blue pseudocolor = DRAQ5® #4084 (fluorescent DNA dye).
To Purchase # 98110
Cat. # Size Qty. Price
98110T
1 Kit  (6 x 20 microliters)

Product Includes Quantity Applications Reactivity MW(kDa) Isotype
RIP (D94C12) XP® Rabbit mAb 3493 20 µl
  • WB
  • IP
  • IF
  • F
H M R Hm Mk 78 Rabbit IgG
Phospho-RIP (Ser166) (D1L3S) Rabbit mAb 65746 20 µl
  • WB
H 78-82 Rabbit IgG
MLKL (D2I6N) Rabbit mAb 14993 20 µl
  • WB
H 54 Rabbit IgG
Phospho-MLKL (Ser358) (D6H3V) Rabbit mAb 91689 20 µl
  • WB
H 54 Rabbit IgG
RIP3 (E1Z1D) Rabbit mAb 13526 20 µl
  • WB
  • IP
H 46-62 Rabbit IgG
Phospho-RIP3 (Ser227) (D6W2T) Rabbit mAb 93654 20 µl
  • WB
  • IF
H 46-62 Rabbit IgG
Anti-rabbit IgG, HRP-linked Antibody 7074 100 µl
  • WB
Rab Goat 

Product Description

The Necroptosis Antibody Sampler Kit provides an economical means of detecting total and phosphorylated proteins associated with necroptosis. The kit includes enough antibody to perform two western blots with each primary antibody.

Specificity / Sensitivity

Each antibody in the Necroptosis Antibody Sampler Kit detects endogenous levels of its target protein. MLKL (D2I6N) Rabbit mAb cross-reacts with an unidentified band at 130 kDa in some cell lines. Phospho-MLKL (Ser358) (D6H3V) Rabbit mAb may also bind to MLKL when dually phosphorylated at Thr357 and Ser358.

Source / Purification

Monoclonal antibodies are produced by immunizing rabbits with synthetic peptides corresponding to Leu190 of human RIP, residues near the carboxyl terminus of human RIP3, and residues near the carboxyl terminus of human MLKL. Phospho-specific monoclonal antibodies are produced by immunizing rabbits with synthetic phospho-peptides corresponding to Ser166 of human RIP, Ser227 of human RIP3, and Ser358 of human MLKL.

Background

Necroptosis, a regulated pathway for necrotic cell death, is triggered by a number of inflammatory signals, including cytokines in the tumor necrosis factor (TNF) family, pathogen sensors such as toll-like receptors (TLRs), ischemic injury, and neurodegenerative diseases (1-3). The process is negatively regulated by caspases and is initiated through a complex containing the RIP and RIP3 kinases, typically referred to as the necrosome. Necroptosis is inhibited by a small molecule inhibitor of RIP, necrostatin-1 (Nec-1) (4). RIP is phosphorylated at several sites within the kinase domain that are sensitive to Nec-1, including Ser14, Ser15, Ser161, and Ser166 (5). During necroptosis, RIP3 is phosphorylated at Ser227, leading to recruitment and phosphorylation of MLKL at Thr357 and Ser358 (6). Phosphorylation of MLKL results in its oligomerization and translocation to the plasma membrane, where it affects membrane integrity (7-10).

Pathways

Explore pathways related to this product.

Limited Uses

Except as otherwise expressly agreed in a writing signed by a legally authorized representative of CST, the following terms apply to Products provided by CST, its affiliates or its distributors. Any Customer's terms and conditions that are in addition to, or different from, those contained herein, unless separately accepted in writing by a legally authorized representative of CST, are rejected and are of no force or effect.

Products are labeled with For Research Use Only or a similar labeling statement and have not been approved, cleared, or licensed by the FDA or other regulatory foreign or domestic entity, for any purpose. Customer shall not use any Product for any diagnostic or therapeutic purpose, or otherwise in any manner that conflicts with its labeling statement. Products sold or licensed by CST are provided for Customer as the end-user and solely for research and development uses. Any use of Product for diagnostic, prophylactic or therapeutic purposes, or any purchase of Product for resale (alone or as a component) or other commercial purpose, requires a separate license from CST. Customer shall (a) not sell, license, loan, donate or otherwise transfer or make available any Product to any third party, whether alone or in combination with other materials, or use the Products to manufacture any commercial products, (b) not copy, modify, reverse engineer, decompile, disassemble or otherwise attempt to discover the underlying structure or technology of the Products, or use the Products for the purpose of developing any products or services that would compete with CST products or services, (c) not alter or remove from the Products any trademarks, trade names, logos, patent or copyright notices or markings, (d) use the Products solely in accordance with CST Product Terms of Sale and any applicable documentation, and (e) comply with any license, terms of service or similar agreement with respect to any third party products or services used by Customer in connection with the Products.

For Research Use Only. Not for Use in Diagnostic Procedures.
Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
XP is a registered trademark of Cell Signaling Technology, Inc.
All other trademarks are the property of their respective owners. Visit our Trademark Information page.